合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 不同稠油下油相中芳烴含量、水相pH值對油-水界面張力變化規律
> 打破試劑溶液的表面張力,提升乳糖醇制備的攪拌混合效果
> 液態合金表面張力快速檢測及相關質量參數實時評價
> 微納米顆粒三相泡沫體系的溶液特性、界面性能和驅油效果(一)
> 太陽電池污染效應試驗,微量天平在其中起到什么作用
> 如何用界面張力儀測定磷脂溶液的表面張力等溫線【Wilhelmy吊片法原理篇】
> 液體分布器設計與表面張力有何關聯之處
> 研究發現:水解聚丙烯酰胺HPAM降低油水界面張力能力極其有限(一)
> 水分測定儀-卡氏干燥爐聯用測定注射用重組人干擾素α2a中水分含量
> 納米銅硅膠膜吸水性能分析實驗方法與結果
推薦新聞Info
-
> St與MMA在無皂乳液聚合過程中的動態表面張力變化——結果與討論、結論
> St與MMA在無皂乳液聚合過程中的動態表面張力變化——摘要、實驗部分
> 低分子熱塑性樹脂體系CBT500/DBTL的界面張力與溫度的關聯性(二)
> 低分子熱塑性樹脂體系CBT500/DBTL的界面張力與溫度的關聯性(一)
> 不同種類與濃度的無機鹽氯化物對麥胚脂肪酶油-水界面特性的影響(二)
> 不同種類與濃度的無機鹽氯化物對麥胚脂肪酶油-水界面特性的影響(一)
> 觸殺型除草劑與油類助劑防除雜草機理及效果
> 高分子類助劑主要增效機制及在除草劑領域應用機理
> 表面活性劑在除草劑噴霧助劑中應用及主要增效機制
> 氣液液微分散體系的微流控制備方法及在稀土離子萃取領域的應用(下)
石油磺酸鹽、聚丙烯酰胺濃度對界面張力的影響
來源:山東化工 瀏覽 847 次 發布時間:2023-08-30
低界面張力有利于剩余油的啟動和殘余油的運移,因此提高采油收率的關鍵取決于體系界面張力降低的程度。依據毛細管原理,毛細管準數與界面張力的關系為Nc=ην/δ,其中Nc為毛管數,δ為驅替相與被驅替相之間的界面張力。Nc值越大,驅油效率越好,其中降低界面張力δ是表面活性劑驅的主要根據。下面簡單的測定石油磺酸鹽、聚丙烯酰胺濃度對界面張力的影響。
界面張力由dIFT型雙通道動態界面張力儀測得,將毛細管放入界面張力儀中,調整溫度55℃,轉速5000 r/min。隔一定時間記錄下油滴直徑,一般情況下2 h就達到動態平衡,界面張力值不再發生變化,最后由電腦軟件計算出界面張力的大小。
石油磺酸鹽濃度對界面張力的影響
圖1不同石油磺酸鹽濃度下體系界面張力隨時間變化規律
將復合體系中聚丙烯酰胺濃度設定為1000 ppm、碳酸鈉濃度設定為0.6%,模擬污水礦化度4200 mg/L時,考察了不同石油磺酸鹽濃度下復合體系界面張力隨時間的變化規律,實驗結果如圖1所示。
可以看出,當石油磺酸鹽總質量濃度較低時,初始界面張力值較大,當濃度較高時,初始界面張力值較低,但平衡后界面張力值變化不大。該復合體系與原油間的油水界面張力在90 min衡,120 min力穩定不變。可以確定,在0.025%~0.4%濃度范圍內石油磺酸鹽對最低界面張力值影響不大,都能形成10-3mN/m數量級的超低界面張力,且到達最低界面張力的時間基本相同,表現出較寬濃度范圍下的超低界面張力。
聚丙烯酰胺濃度對界面張力的影響
在石油磺酸鹽濃度為0.1%,模擬污水礦化度4200 mg/L,碳酸鈉濃度0.6%條件下,分別測定聚丙烯酰胺濃度為500、1000和2000 mg/L的復合體系隨時間變化的界面張力值,結果如圖2所示。
圖2不同聚丙烯酰胺濃度復合體系界面張力隨時間變化規律
可以看出,聚丙烯酰胺濃度越低,復合體系界面張力達到最低界面張力值的時間越短。聚丙烯酰胺濃度越高,復合體系越不容易達到最低界面張力值,相同時間下的界面張力值顯著升高。這是因為聚丙烯酰胺屬于水溶性高分子聚合物,濃度越高,三元復合體系的粘度越大,越不利于體系中分子的擴散,容易形成石油磺酸鹽分子的聚集,導致油水界面上石油磺酸鹽分子吸附量減小,復合體系界面張力升高。所以,選擇較低的聚丙烯酰胺濃度500~1000 ppm時,該復合體系能形成10-3mN/m數量級的超低界面張力值,同時根據井口注入濃度要求確定聚丙烯酰胺濃度,有利于經濟效益的提高。