合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
推薦新聞Info
-
> 磺酸基團修飾水滑石LB復合薄膜自組裝機理及酸致變色特性(二)
> 磺酸基團修飾水滑石LB復合薄膜自組裝機理及酸致變色特性(一)
> LDH/染料復合LB膜組裝過程的多樣化和化學氣體傳感機理研究
> 礦井瓦斯防治:表面活性劑溶液表面張力、泡沫特性及對甲烷緩釋效應(三)
> 礦井瓦斯防治:表面活性劑溶液表面張力、泡沫特性及對甲烷緩釋效應(二)
> 礦井瓦斯防治:表面活性劑溶液表面張力、泡沫特性及對甲烷緩釋效應(一)
> 連鑄結晶器內渣鋼兩相表面張力和界面張力的演變行為與機制
> St與MMA在無皂乳液聚合過程中的動態表面張力變化——結果與討論、結論
> St與MMA在無皂乳液聚合過程中的動態表面張力變化——摘要、實驗部分
> 低分子熱塑性樹脂體系CBT500/DBTL的界面張力與溫度的關聯性(二)
克服表面張力使液態金屬可拉伸電子器件化的研究進展
來源:中國科學雜志社 瀏覽 949 次 發布時間:2022-06-02
最近,哈爾濱工業大學化工與化學學院齊殿鵬教授團隊的綜述文章“From liquid metal to stretchable electronics:Overcoming the surface tension”在Science China Materials(SCMs)期刊在線發表,總結了近年來通過克服表面張力使液態金屬可拉伸電子器件化的研究進展。
液態金屬(LMs)是在室溫下同時具備金屬導電性以及液體延展性的金屬。不同于廣為人知的金屬汞,鎵及其合金因其低毒性和超低蒸汽壓而具備在可拉伸電子領域被廣泛應用的潛力。可拉伸電子器件是指在被拉長的條件下保持其功能的電路和電子元件,這種器件在許多現有芯片技術無法實現的系統中大放異彩,并且可以彌補傳統電子設備的不足,例如輔助和替代傳統的生理檢測系統等。這類器件同時對材料的高導電性和高延展性提出了要求,而液態金屬十分契合這兩個重要特性。然而,在使液態金屬可拉伸電子器件化的過程中存在一個天然的阻礙,即液態金屬的高表面張力(>600 mN/m)。其高表面張力阻止液態金屬潤濕大多數表面,并支持其自發形成球形液滴的傾向,進而難以形成電子器件要求的圖案。
該文從克服液態金屬表面張力的角度出發,將液態金屬的成型方式分為利用宏觀機械力、改變顆粒尺寸、相變及改變潤濕特性這四個策略。克服了表面張力的阻礙后,液態金屬在傳感、能量收集等方面有巨大的應用前景。此外,該文還討論了目前該領域存在的挑戰和機遇。
圖1克服液態金屬表面張力的四種策略及其成型的難易程度
圖文要點
液態金屬及其氧化層
液態金屬在含有微量氧氣的環境中就會被氧化,形成0.5–5 nm的自限的氧化層,獲得保持非球面形狀的能力。
圖2液態金屬及其氧化層的性質
(1)使用宏觀機械力
宏觀機械力在此特指用來限制液態金屬表面張力,使其保持非球形狀的力。研究人員通過小直徑的通道將液態金屬擠出或吸收,在氧化層的幫助下形成明顯超過瑞利極限的圓柱體形狀。
圖3 3D打印成型液態金屬
圖4半開放式通道填充和微通道注射法成型液態金屬
(2)減小顆粒尺寸
使用超聲和剪切等自上而下的方法將液態金屬從一個大的液滴分割成許多微米級或納米級的液滴,并保證其粒度分布相對均勻。氧化層或其他人工形成的表面修飾將暫時阻止液滴的重新結合。可拉伸電子設備的圖案可以通過排列這些液滴來繪制,這相當于通過減小粒徑以增加比表面積(增加氧化層比例)進而降低表面張力。
圖5減小粒徑使液態金屬成型
(3)相變
由于液態金屬的低熔點(不超過16℃),采取冷凍相變使液態金屬凝固加強了內部分子與表面分子的結合力,能更徹底地克服液態金屬的表面張力。改變相位作為一種輔助方法,與使用機械外力的方法相結合,可有效增強液態金屬在成型過程中的穩定性。
(4)改變潤濕特性
除了某些特定材料的表面(金、銅、錫等)可以潤濕外,使用施加電壓等方法也可以改變液態金屬的潤濕特性,使其在基材表面擴散,在此基礎上可以制造出可拉伸的電子設備。
圖6冷凍相變及改變潤濕特性使液態金屬成型
總結和展望
雖然基于液態金屬的成型技術及其應用的研究在過去十幾年中得到快速發展,但是在這些電子設備被廣泛應用前,仍有一些挑戰亟待解決。
首先,液態金屬能在可拉伸電子領域得到廣泛應用,很大程度上取決于其流體特性,單純使用彈性體封裝液態金屬,通常不存在泄漏的風險。盡管如此,在需要外部導體連接電子設備的電路中,無論是作為導體還是電子設備,液態金屬被彈性體覆蓋的結構都需要與其他導體接觸。如果用剛性導體來接觸,由于液態金屬的流體性質,剛性導體需要植入彈性體。彈性體和剛性導體之間的楊氏模量相差幾個數量級,這導致在工作過程中容納剛性導體的彈性體通道被擴大,有泄露的風險。如果利用水凝膠等可拉伸導體作為觸點,由于其阻值相對較大,設備的性能會有較大損失。因此,適當的連接方法仍有待開發。
其次,液態金屬在一些特定材料的光滑表面上顯示出良好的鋪展性能,如金、鋅和銅。良好的鋪展性能來自于液態金屬對這些材料的吸收。液態金屬會進入材料的晶格,使其產生脆性。然而,在液態金屬吸收這些元素后,其氧化層的性質是否發生變化,是否能保持原來的形狀,仍有待研究。由這些材料制成的電子器件的使用壽命和穩定性也值得關注。
最后,關于液態金屬內部氧化層的動力學的許多問題都值得討論,這將實現對氧化層更精確和全面的調控,并大大擴展液態金屬在可拉伸電子器件中的應用。