合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
推薦新聞Info
-
> St與MMA在無皂乳液聚合過程中的動態表面張力變化——結果與討論、結論
> St與MMA在無皂乳液聚合過程中的動態表面張力變化——摘要、實驗部分
> 低分子熱塑性樹脂體系CBT500/DBTL的界面張力與溫度的關聯性(二)
> 低分子熱塑性樹脂體系CBT500/DBTL的界面張力與溫度的關聯性(一)
> 不同種類與濃度的無機鹽氯化物對麥胚脂肪酶油-水界面特性的影響(二)
> 不同種類與濃度的無機鹽氯化物對麥胚脂肪酶油-水界面特性的影響(一)
> 觸殺型除草劑與油類助劑防除雜草機理及效果
> 高分子類助劑主要增效機制及在除草劑領域應用機理
> 表面活性劑在除草劑噴霧助劑中應用及主要增效機制
> 氣液液微分散體系的微流控制備方法及在稀土離子萃取領域的應用(下)
槐糖脂的屬性:脂肪酸底物和混合比例的影響——摘要、介紹
來源:上海謂載 瀏覽 1348 次 發布時間:2021-11-17
摘要
以葡萄糖和棕櫚酸(SL-p)、硬脂酸(SL-s)、油酸(SL-o)或亞油酸(SL-l)為原料,采用補料分批發酵法合成了槐脂(SLs),并用常壓化學電離質譜(APCI-MS)準確測定了其結構分布。 用張力法測定了表面活性劑的臨界膠束濃度(CMC)、最小表面張力(min.ST)和油水界面張力(IFT)。 除SL-l(其IFT為7 mN/m)外,當IFT在3-5 mN/m范圍內時,在較少考慮基質的情況下獲得35-36 mN/m的最小STs。 最大的差異出現在CMC值上,其范圍從SL-s的35 ppm到SL-l的250 ppm。 通過以不同比例手動混合這四種SLs,可以更好地控制CMC值,而不影響最小ST或IFT,這將證明隨著SLs新應用的建立而有益。
介紹
生物表面活性劑是由生物來源產生的兩親性分子,傾向于聚集形成膠束或聚集在界面上,如空氣/水、油/水或水/固體,以降低系統的界面和/或表面張力。 由于其固有的生物降解性和廣泛的功能特性(包括乳化、相分配、潤濕、發泡和表面活性),其中許多材料作為目前使用的石化產品的添加劑或替代品,正引起工業界的興趣。 目前正在工業上考慮的一類生物表面活性劑是糖脂。 一種更常見的天然糖脂生物表面活性劑是槐脂(SLs),它是由許多酵母合成的,包括假絲酵母(研究最多的系統)、假絲酵母(Hommel和Huse 1993)、木蘭球孢菌(Gorin et al.1961)和博戈里紅酵母(Nun~ez et al.2004)。 槐脂由二糖(槐糖;2-O-b-D-吡喃葡萄糖基-b-D-吡喃葡萄糖)組成,通過槐糖的10-羥基和脂肪酸的x或x-1碳之間的糖苷鍵連接到羥基脂肪酰基部分(圖1)。
圖1(a)10400內酯和(b)游離酸形式的17-L-[20-O-b-吡喃葡萄糖基-b-D-吡喃葡萄糖基)-氧]-9-十八烯酸60600二乙酸酯槐脂的結構
通常,槐糖的60-和600-羥基被乙酰化,脂肪酸鏈長度在16到18個碳之間變化(一個例外是由R.bogoriensis合成的SLs,其中包括22和24個碳的脂肪酸側鏈;Nun?ez et al.2004); 并且可能是飽和的或不飽和的。 此外,SLs的優選結構構象為內酯,其中脂肪酸的羧基在碳400處酯化為二糖環,盡管在某些情況下,SLs的脂肪酸可能保持游離酸、開鏈形式。
SLs對生產生物體的一個明顯好處是有助于獲得和利用親脂性底物(Ito和Inoue 1982)。 然而,其巨大的生產能力(據報道,當使用乳清油和菜籽油作為基質時,其產量高達422 g/l;Daniel等人,1998年)和兩親性也提高了人們對其在某些工業領域應用的認識(Solaiman等人,2004年)。 乙酰化內酯已被用作洗發水、沐浴液、洗滌劑(Hall等人,1995年;Inoue等人,1980年)和化妝品中的添加劑,并被證明具有抑菌活性(Mager等人,1987年),而酸性形式的SLs已被發現對皮膚治療具有治療活性(Maingault,1999年) 作為保濕劑(Abe等人,1981年)。 在一定程度上,結構變化(以及物理性質)可以通過改變脂質碳源來實現,從而改變SL脂肪酸含量。
在本研究中,棉鈴蟲利用C16(棕櫚酸)和C18(硬脂酸、油酸和亞油酸)脂肪酸合成了SLs,精確測定了它們的含量分布,并且它們的表面活性特性與其分子含量相關。 此外,所得SL以不同比例混合在一起,提供了一種簡單但有效的方法來微調SL性能,而無需進行更昂貴的化學改性。