合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
推薦新聞Info
-
> St與MMA在無皂乳液聚合過程中的動態表面張力變化——結果與討論、結論
> St與MMA在無皂乳液聚合過程中的動態表面張力變化——摘要、實驗部分
> 低分子熱塑性樹脂體系CBT500/DBTL的界面張力與溫度的關聯性(二)
> 低分子熱塑性樹脂體系CBT500/DBTL的界面張力與溫度的關聯性(一)
> 不同種類與濃度的無機鹽氯化物對麥胚脂肪酶油-水界面特性的影響(二)
> 不同種類與濃度的無機鹽氯化物對麥胚脂肪酶油-水界面特性的影響(一)
> 觸殺型除草劑與油類助劑防除雜草機理及效果
> 高分子類助劑主要增效機制及在除草劑領域應用機理
> 表面活性劑在除草劑噴霧助劑中應用及主要增效機制
> 氣液液微分散體系的微流控制備方法及在稀土離子萃取領域的應用(下)
油和水為什么能混合形成乳濁液?
來源:前瞻網 瀏覽 892 次 發布時間:2022-09-09
常規狀態下,油和水無法混合。這是因為,水和油的分子結構差別很大,油是非極性的,水是極性的,不符合“相似相溶定律”。但是,如果將二者置于超聲波環境下,油能以小液滴的形式分散在水中,形成乳濁液。該乳濁液能穩定存在數周至數月,但是這種現象背后的機制尚不明確。
近日,一項由瑞士洛桑聯邦理工學院進行的研究表明,油—水界面處的電荷分布是形成乳濁液的關鍵。
研究人員將兩束超短激光耦合在混合物中的油滴附近,產生的散射光子具有兩個入射光子的能量總和,反映出了油—水界面化學鍵的振動。通常來說,水分子通過氫鍵與鄰近的水分子發生電荷交換,但油—水界面處的水分子通過這一方式形成氫鍵,其不平衡的電荷只能通過水—油相互作用(反常氫鍵)轉移給油分子。
研究人員還發現,在分子尺度上,油—水界面與涉及蛋白質折疊或生物膜形成的界面有很強的相似性。
該研究論文題為“Charge transfer across C–H???O hydrogen bonds stabilizes oil droplets in water”,已發表在《科學》期刊上。