合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
推薦新聞Info
-
> St與MMA在無皂乳液聚合過程中的動態表面張力變化——結果與討論、結論
> St與MMA在無皂乳液聚合過程中的動態表面張力變化——摘要、實驗部分
> 低分子熱塑性樹脂體系CBT500/DBTL的界面張力與溫度的關聯性(二)
> 低分子熱塑性樹脂體系CBT500/DBTL的界面張力與溫度的關聯性(一)
> 不同種類與濃度的無機鹽氯化物對麥胚脂肪酶油-水界面特性的影響(二)
> 不同種類與濃度的無機鹽氯化物對麥胚脂肪酶油-水界面特性的影響(一)
> 觸殺型除草劑與油類助劑防除雜草機理及效果
> 高分子類助劑主要增效機制及在除草劑領域應用機理
> 表面活性劑在除草劑噴霧助劑中應用及主要增效機制
> 氣液液微分散體系的微流控制備方法及在稀土離子萃取領域的應用(下)
石墨烯與磷脂之間的作用——結論、致謝!
來源:上海謂載 瀏覽 1153 次 發布時間:2021-11-11
結論
在本研究中,朗繆爾單層技術作為二維 方法適用于空氣-水/水界面 了解彼此之間互動的性質和方向 GO 和脂質模型。 具有相同 18 碳烷基的五種脂質 鏈,但故意選擇不同的頭組電荷 使可能的相互作用合理化。 實驗結果 表明這些脂質和 GO 之間的相互作用是明確的 受靜電相互作用支配。 當這些脂質 散布在空氣-GO 分散界面,GO 可以結合 或被吸附到單層帶正電荷的脂質中 DODAB 和 DSEPC,增加平均分子面積。 然而,單層帶中性電荷的頭基 (磷酸膽堿)或帶負電荷的頭部基團(磷酸和羧基)不吸附 GO,因為沒有偏愛 靜電相互作用。 因為磷脂 在生物系統中帶負電或中性電, GO 可能被細胞攝取到膜中 是由于 GO 和 磷脂,但通過膜的生物活性。
當 GO 被注入到 DODAB 和 DSEPC 帶正電荷單層,不同 發現了表面壓力的觀察結果。 GO 可以插入 單層 DODAB 以 20 mN/m 增加表面 壓力。 然而,GO 不能擴散到與 即使在低得多的表面壓力下 DSEPC 單層 可能是由于屏蔽了乙基磷基團。 GO 綁定到 DODAB 時的定向模型和 提出 DSEPC 單層來解釋不同的 GO在空氣-水界面的吸附行為。 建議采用“邊緣向內”而不是“面向內”的方向 描述 GO 納米片插入時的方向 DODAB 的單層。
作者信息
通訊作者
*電子郵件: (RML)。
筆記
作者聲明沒有競爭性經濟利益。
致謝
這項工作得到了 2012 年橋梁基金資助 邁阿密大學。
參考
(1) Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228?240.
(2) Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183?191.
(3) Morales-Narvaez, E.; Merkoc ? i, A. Graphene Oxide as an Optical ? Biosensing Platform. Adv. Mater. 2012, 24, 3298?3308.
(4) Yang, X.; Wang, Y.; Huang, X.; Ma, Y.; Huang, Y.; Yang, R.; Duan, H.; Chen, Y. Multi-Functionalized Graphene Oxide Based Anticancer Drug-Carrier with Dual-Targeting Function and pHSensitivity. J. Mater. Chem. 2011, 21, 3448?3454.
(5) Nguyen, P.; Berry, V. Graphene Interfaced with Biological Cells: Opportunities and Challenges. J. Phys. Chem. Lett. 2012, 3, 1024? 1029.
(6) Li, S.; Aphale, A. N.; Macwan, I. G.; Patra, P. K.; Gonzalez, W. G.; Miksovska, J.; Leblanc, R. M. Graphene Oxide as a Quencher for Fluorescent Assay of Amino Acids, Peptides, and Proteins. ACS Appl. Mater. Interfaces 2012, 4, 7069?7075.
(7) Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc. 2008, 130, 10876?10877.
(8) Mu, Q.; Su, G.; Li, L.; Gilbertson, B. O.; Yu, L. H.; Zhang, Q.; Sun, Y. P.; Yan, B. Size-Dependent Cell Uptake of Protein-Coated Graphene Oxide Nanosheets. ACS Appl. Mater. Interfaces 2012, 4, 2259?2266.
(9) Sharma, P.; Tuteja, S. K.; Bhalla, V.; Shekhawat, G.; Dravid, V. P.; Suri, C. R. Bio-Functionalized Graphene?Graphene Oxide Nanocomposite Based Electrochemical Immunosensing. Biosens. Bioelectron. 2013, 39, 99?105.
(10) Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.; Goodwin, A.; Zaric, S.; Dai, H. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Res. 2008, 1, 203?212.
(11) Peng, C.; Hu, W.; Zhou, Y.; Fan, C.; Huang, Q. Intracellular Imaging with a Graphene-Based Fluorescent Probe. Small 2010, 6, 1686?1692.
(12) Wang, Y.; Zhen, S. J.; Zhang, Y.; Li, Y. F.; Huang, C. Z. Facile Fabrication of Metal Nanoparticle/Graphene Oxide Hybrids: A New Strategy To Directly Illuminate Graphene for Optical Imaging. J. Phys. Chem. C 2011, 115, 12815?12821.
(13) Wang, Y.; Li, Z.; Hu, D.; Lin, C.; Li, J.; Lin, Y. Aptamer/ Graphene Oxide Nanocomplex for in Situ Molecular Probing in Living Cells. J. Am. Chem. Soc. 2010, 132, 9274?9276.
(14) Zhang, M.; Yin, B.-C.; Wang, X.-F.; Ye, B.-C. Interaction of Peptides with Graphene oxide and Its Application for Real-Time Monitoring of Protease Activity. Chem. Commun. 2011, 47, 2399? 2401.
(15) Tian, B.; Wang, C.; Zhang, S.; Feng, L.; Liu, Z. Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide. ACS Nano 2011, 5, 7000?7009.
(16) Li, M.; Yang, X.; Ren, J.; Qu, K.; Qu, X. Using Graphene Oxide High Near-Infrared Absorbance for Photothermal Treatment of Alzheimer's Disease. Adv. Mater. 2012, 24, 1722?1728.
(17) Robinson, J. T.; Tabakman, S. M.; Liang, Y.; Wang, H.; Sanchez Casalongue, H.; Vinh, D.; Dai, H. Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance for Photothermal Therapy. J. Am. Chem. Soc. 2011, 133, 6825?6831.
(18) Spector, A. A.; Yorek, M. A. Membrane Lipid Composition and Cellular Function. J. Lipid Res. 1985, 26, 1015?35.
(19) Frost, R.; Jo? nsson, G. E.; Chakarov, D.; Svedhem, S.; Kasemo, B. Graphene Oxide and Lipid Membranes: Interactions and Nanocomposite Structures. Nano Lett. 2012, 12, 3356?3362.
(20) Chang, Y.; Yang, S.-T.; Liu, J.-H.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H. In Vitro Toxicity Evaluation of Graphene Oxide on A549 Cells. Toxicol. Lett. 2011, 200, 201?210.
(21) Liao, K.-H.; Lin, Y.-S.; Macosko, C. W.; Haynes, C. L. Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Appl. Mater. Interfaces 2011, 3, 2607?2615.
(22) Zhang, L. L.; Zhao, S.; Tian, X. N.; Zhao, X. S. Layered Graphene Oxide Nanostructures with Sandwiched Conducting Polymers as Supercapacitor Electrodes. Langmuir 2010, 26, 17624? 17628.
(23) Wang, Z.-M.; Wang, W.; Coombs, N.; Soheilnia, N.; Ozin, G. A. Graphene Oxide?Periodic Mesoporous Silica Sandwich Nanocomposites with Vertically Oriented Channels. ACS Nano 2010, 4, 7437? 7450.
(24) Gao, Y.; Yip, H.-L.; Chen, K.-S.; O'Malley, K. M.; Acton, O.; Sun, Y.; Ting, G.; Chen, H.; Jen, A. K. Y. Surface Doping of Conjugated Polymers by Graphene Oxide and Its Application for Organic Electronic Devices. Adv. Mater. 2011, 23, 1903?1908.
(25) Engel, M. F. M.; Yigittop, H.; Elgersma, R. C.; Rijkers, D. T. S.; Liskamp, R. M. J.; de Kruijff, B.; Ho? ppener, J. W. M.; Killian, J. A. Islet Amyloid Polypeptide Inserts into Phospholipid Monolayers as Monomer. J. Mol. Biol. 2006, 356, 783?789.
(26) Evers, F.; Jeworrek, C.; Tiemeyer, S.; Weise, K.; Sellin, D.; Paulus, M.; Struth, B.; Tolan, M.; Winter, R. Elucidating the Mechanism of Lipid Membrane-Induced IAPP Fibrillogenesis and Its Inhibition by the Red Wine Compound Resveratrol: A Synchrotron X-ray Reflectivity Study. J. Am. Chem. Soc. 2009, 131, 9516?9521.
(27) Theumer, M. G.; Clop, P. D.; Rubinstein, H. R.; Perillo, M. A. Effect of Surface Charge on the Interfacial Orientation and Conformation of FB1 in Model Membranes. J. Phys. Chem. B 2012, 116, 14216?14227.
(28) Si, Y.; Samulski, E. T. Synthesis of Water Soluble Graphene. Nano Lett. 2008, 8, 1679?1682.
(29) Constantine, C.; Elkind, B. J.; Leblanc, R. M. Encyclopedia of Surface and Colloid Science; Taylor & Francis Group: New York, 2006.
(30) Engelking, J.; Menzel, H. Adsorption of Anionic Polyelectrolytes to Dioctadecyldimethylammonium Bromide Monolayers. Eur. Phys. J. E 2001, 5, 87?96.
(31) Bao, Y.-Y.; Bi, L.-H.; Wu, L.-X.; Mal, S. S.; Kortz, U. Preparation and Characterization of Langmuir?Blodgett Films of Wheel-Shaped Cu-20 Tungstophosphate and DODA by Two Different Strategies. Langmuir 2009, 25, 13000?13006.
(32) MacDonald, R. C.; Gorbonos, A.; Momsen, M. M.; Brockman, H. L. Surface Properties of Dioleoyl-sn-glycerol-3-ethylphosphocholine, a Cationic Phosphatidylcholine Transfection Agent, Alone and in Combination with Lipids or DNA. Langmuir 2006, 22, 2770?2779.
(33) Zhang, H.; Peng, C.; Yang, J.; Lv, M.; Liu, R.; He, D.; Fan, C.; Huang, Q. Uniform Ultrasmall Graphene Oxide Nanosheets with Low Cytotoxicity and High Cellular Uptake. ACS Appl. Mater. Interfaces 2013, 5, 1761?1767.
(34) Dong, H.; Gao, W.; Yan, F.; Ji, H.; Ju, H. Fluorescence Resonance Energy Transfer between Quantum Dots and Graphene Oxide for Sensing Biomolecules. Anal. Chem. 2010, 82, 5511?5517.
(35) Li, S.; Guo, J.; Patel, R. A.; Dadlani, A. L.; Leblanc, R. M. Interaction between Graphene Oxide and Pluronic F127 at the Air? Water Interface. Langmuir 2013, 29, 5742?5748.
(36) Gosvami, N. N.; Parsons, E.; Marcovich, C.; Berkowitz, M. L.; Hoogenboom, B. W.; Perkin, S. Resolving the Structure of a Model Hydrophobic Surface: DODAB Monolayers on Mica. RSC Adv. 2012, 2, 4181?4188.